Arthur Zwaenepoel

Arthur Zwaenepoel — PhD student
Joined the group in 2017

Arthur Zwaenepoel (Gent °1995). I am currently a PhD student in the group of professor Yves Van de Peer, conducting research on Bayesian statistical methods for the study of genome evolution and the evolutionary importance of polyploidy. More broadly, I would summarize my research interests as evolutionary genetics, probabilistic modeling in biology, Bayesian statistics and theoretical biology.

Perhaps the first lesson to be learned from biology is that there are lessons to be learned from biology. - Robert Rosen (2013), Essays on Life Itself

more/less

Birth: February 20, 1995, Ghent (Belgium)

Education

September 2012 - June 2015: Bachelor of Science in Biochemistry & Biotechnology, Ghent University
September 2013 - June 2015: Honours programme: Quetelet Colleges, Ghent University
September 2015 - June 2017: Master of Science in Bioinformatics (Systems Biology), Ghent University

Publications

  1. Chen, H., Zwaenepoel, A., & Van de Peer, Y. (2024). wgd v2: a suite of tools to uncover and date ancient polyploidy and whole-genome duplication. Bioinformatics. https://doi.org/10.1093/bioinformatics/btae272
    Motivation Major improvements in sequencing technologies and genome sequence assembly have led to a huge increase in the number of available genome sequences. In turn, these genome sequences form an invaluable source for evolutionary, ecological, and comparative studies. One kind of analysis that has become routine is the search for traces of ancient polyploidy, particularly for plant genomes, where whole-genome duplication (WGD) is rampant. Results Here, we present a major update of a previously developed tool wgd, namely wgd v2, to look for remnants of ancient polyploidy, or WGD. We implemented novel and improved previously developed tools to a) construct KS age distributions for the whole-paranome (collection of all duplicated genes in a genome), b) unravel intra- and inter- genomic collinearity resulting from WGDs, c) fit mixture models to age distributions of gene duplicates, d) correct substitution rate variation for phylogenetic placement of WGDs, and e) date ancient WGDs via phylogenetic dating of WGD-retained gene duplicates. The applicability and feasibility of wgd v2 for the identification and the relative and absolute dating of ancient WGDs is demonstrated using different plant genomes.
  2. Chen, H., Fang, Y., Zwaenepoel, A., Huang, S., Van de Peer, Y., & Li, Z. (2023). Revisiting ancient polyploidy in leptosporangiate ferns. NEW PHYTOLOGIST, 237(4), 1405–1417. https://doi.org/10.1111/nph.18607
    Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS-age distributions and applying substitution rate corrections, and by conducting statistical gene tree – species tree reconciliation analyses. Our integrative analyses confidently identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree – species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
  3. Chen, H., & Zwaenepoel, A. (2023). Inference of ancient polyploidy from genomic data. In Y. Van de Peer (Ed.), Polyploidy : methods and protocols (Vol. 2545, pp. 3–18). https://doi.org/10.1007/978-1-0716-2561-3_1
    Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software “wgd,” geared toward a typical exploratory analysis of a newly obtained genome sequence.
  4. Zwaenepoel, A. (2022). Bayesian statistical methods in evolutionary genomics. Ghent University. Faculty of Sciences, Ghent, Belgium.
  5. Wang, X., Chen, S., Ma, X., Yssel, A. E. J., Chaluvadi, S. R., Johnson, M. S., … Van Deynze, A. (2021). Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis). GIGASCIENCE, 10(3). https://doi.org/10.1093/gigascience/giab013
    Background: Digitaria exilis, white fonio, is a minor but vital crop of West Africa that is valued for its resilience in hot, dry, and low-fertility environments and for the exceptional quality of its grain for human nutrition. Its success is hindered, however, by a low degree of plant breeding and improvement. Findings: We sequenced the fonio genome with long-read SMRT-cell technology, yielding a similar to 761 Mb assembly in 3,329 contigs (N50, 1.73 Mb; L50, 126). The assembly approaches a high level of completion, with a BUSCO score of >99%. The fonio genome was found to be a tetraploid, with most of the genome retained as homoeologous duplications that differ overall by similar to 4.3%, neglecting indels. The 2 genomes within fonio were found to have begun their independent divergence similar to 3.1 million years ago. The repeat content (>49%) is fairly standard for a grass genome of this size, but the ratio of Gypsy to Copia long terminal repeat retrotransposons (similar to 6.7) was found to be exceptionally high. Several genes related to future improvement of the crop were identified including shattering, plant height, and grain size. Analysis of fonio population genetics, primarily in Mali, indicated that the crop has extensive genetic diversity that is largely partitioned across a north-south gradient coinciding with the Sahel and Sudan grassland domains. Conclusions: We provide a high-quality assembly, annotation, and diversity analysis for a vital African crop. The availability of this information should empower future research into further domestication and improvement of fonio.
  6. Zhao, T., Zwaenepoel, A., Xue, J.-Y., Kao, S.-M., Li, Z., Schranz, M. E., & Van de Peer, Y. (2021). Whole-genome microsynteny-based phylogeny of angiosperms. NATURE COMMUNICATIONS, 12(1). https://doi.org/10.1038/s41467-021-23665-0
    Plant genomes vary greatly in size, organization, and architecture. Such structural differences may be highly relevant for inference of genome evolution dynamics and phylogeny. Indeed, microsynteny-the conservation of local gene content and order-is recognized as a valuable source of phylogenetic information, but its use for the inference of large phylogenies has been limited. Here, by combining synteny network analysis, matrix representation, and maximum likelihood phylogenetic inference, we provide a way to reconstruct phylogenies based on microsynteny information. Both simulations and use of empirical data sets show our method to be accurate, consistent, and widely applicable. As an example, we focus on the analysis of a large-scale whole-genome data set for angiosperms, including more than 120 available high-quality genomes, representing more than 50 different plant families and 30 orders. Our 'microsynteny-based' tree is largely congruent with phylogenies proposed based on more traditional sequence alignment-based methods and current phylogenetic classifications but differs for some long-contested and controversial relationships. For instance, our synteny-based tree finds Vitales as early diverging eudicots, Saxifragales within superasterids, and magnoliids as sister to monocots. We discuss how synteny-based phylogenetic inference can complement traditional methods and could provide additional insights into some long-standing controversial phylogenetic relationships. Molecular phylogenies are traditionally based on sequence variation, but genome rearrangements also contain phylogenetic information. Here, Zhao et al. develop an approach to reconstruct phylogenies based on microsynteny and illustrate it with a reconstruction of the angiosperm phylogeny.
  7. Roelofs, D., Zwaenepoel, A., Sistermans, T., Nap, J., Kampfraath, A. A., Van de Peer, Y., … Kraaijeveld, K. (2020). Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC BIOLOGY, 18(1). https://doi.org/10.1186/s12915-020-00789-1
    Background: Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. Results: Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. Conclusions: Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
  8. Zhang, J., Fu, X.-X., Li, R.-Q., Zhao, X., Liu, Y., Li, M.-H., … Chen, Z.-D. (2020). The hornwort genome and early land plant evolution. NATURE PLANTS, 6(2), 107–118. https://doi.org/10.1038/s41477-019-0588-4
    Hornworts, liverworts and mosses are three early diverging clades of land plants, and together comprise the bryophytes. Here, we report the draft genome sequence of the hornwort Anthoceros angustus. Phylogenomic inferences confirm the monophyly of bryophytes, with hornworts sister to liverworts and mosses. The simple morphology of hornworts correlates with low genetic redundancy in plant body plan, while the basic transcriptional regulation toolkit for plant development has already been established in this early land plant lineage. Although the Anthoceros genome is small and characterized by minimal redundancy, expansions are observed in gene families related to RNA editing, UV protection and desiccation tolerance. The genome of A. angustus bears the signatures of horizontally transferred genes from bacteria and fungi, in particular of genes operating in stress-response and metabolic pathways. Our study provides insight into the unique features of hornworts and their molecular adaptations to live on land.
  9. Zwaenepoel, A., & Van de Peer, Y. (2020). Model-based detection of whole-genome duplications in a phylogeny. MOLECULAR BIOLOGY AND EVOLUTION, 37(9), 2734–2746. https://doi.org/10.1093/molbev/msaa111
    Ancient whole-genome duplications (WGDs) leave signatures in comparative genomic data sets that can be harnessed to detect these events of presumed evolutionary importance. Current statistical approaches for the detection of ancient WGDs in a phylogenetic context have two main drawbacks. The first is that unwarranted restrictive assumptions on the ‘background’ gene duplication and loss rates make inferences unreliable in the face of model violations. The second is that most methods can only be used to examine a limited set of a priori selected WGD hypotheses; and cannot be used to discover WGDs in a phylogeny. In this study we develop an approach for WGD inference using gene count data that seeks to overcome both issues. We employ a phylogenetic birth-death model that includes WGD in a flexible hierarchical Bayesian approach, and use reversible-jump MCMC to perform Bayesian inference of branch-specific duplication, loss and WGD retention rates accross the space of WGD configurations. We evaluate the proposed method using simulations, apply it to data sets from flowering plants and discuss the statistical intricacies of model-based WGD inference.
  10. Zwaenepoel, A., & Van de Peer, Y. (2019). wgd-simple command line tools for the analysis of ancient whole genome duplications. BIOINFORMATICS, 35(12), 2153–2155. https://doi.org/10.1093/bioinformatics/bty915
    MOTIVATION: Ancient whole genome duplications (WGDs) have been uncovered in almost all major lineages of life on Earth and the search for traces or remnants of such events has become standard practice in most genome analyses. This is especially true for plants, where ancient WGDs are abundant. Common approaches to find evidence for ancient WGDs include the construction of KS distributions and the analysis of intragenomic co-linearity. Despite the increased interest in WGDs and the acknowledgement of their evolutionary importance, user-friendly and comprehensive tools for their analysis are lacking. Here, we present an easy to use command-line tool for KS distribution construction named wgd. The wgd suite provides commonly used KS and co-linearity analysis workflows together with tools for modeling and visualization, rendering these analyses accessible to genomics researchers in a convenient manner. AVAILABILITY & IMPLEMENTATION: wgd is free and open source software implemented in Python and is available at https://github.com/arzwa/wgd. SUPPLEMENTARY INFORMATION: Supplementary methods are available at Bioinformatics online.
  11. Zwaenepoel, A., Li, Z., Lohaus, R., & Van de Peer, Y. (2019). Finding evidence for whole genome duplications : a reappraisal. MOLECULAR PLANT, 12(2), 133–136. https://doi.org/10.1016/j.molp.2018.12.019
  12. Zwaenepoel, A., & Van de Peer, Y. (2019). Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. MOLECULAR BIOLOGY AND EVOLUTION, 36(7), 1384–1404. https://doi.org/10.1093/molbev/msz088
    Gene tree - species tree reconciliation methods have been employed for studying ancient whole genome duplication (WGD) events across the eukaryotic tree of life. Most approaches have relied on using maximum likelihood trees and the maximum parsimony reconciliation thereof to count duplication events on specific branches of interest in a reference species tree. Such approaches do not account for uncertainty in the gene tree and reconciliation, or do so only heuristically. The effects of these simplifications on the inference of ancient WGDs are unclear. In particular the effects of variation in gene duplication and loss rates across the species tree have not been considered. Here, we developed a full probabilistic approach for phylogenomic reconciliation based WGD inference, accounting for both gene tree and reconciliation uncertainty using a method based on the principle of amalgamated likelihood estimation. The model and methods are implemented in a maximum likelihood and Bayesian setting and account for variation of duplication and loss rate across the species tree, using methods inspired by phylogenetic divergence time estimation. We applied our newly developed framework to ancient WGDs in land plants and investigate the effects of duplication and loss rate variation on reconciliation and gene count based assessment of these earlier proposed WGDs.
  13. Zwaenepoel, A., Diels, T., Amar, D., Van Parys, T., Shamir, R., Van de Peer, Y., & Tzfadia, O. (2018). MorphDB : prioritizing genes for specialized metabolism pathways and gene ontology categories in plants. FRONTIERS IN PLANT SCIENCE, 9. https://doi.org/10.3389/fpls.2018.00352
    Recent times have seen an enormous growth of "omics" data, of which high-throughput gene expression data are arguably the most important from a functional perspective. Despite huge improvements in computational techniques for the functional classification of gene sequences, common similarity-based methods often fall short of providing full and reliable functional information. Recently, the combination of comparative genomics with approaches in functional genomics has received considerable interest for gene function analysis, leveraging both gene expression based guilt-by-association methods and annotation efforts in closely related model organisms. Besides the identification of missing genes in pathways, these methods also typically enable the discovery of biological regulators (i.e., transcription factors or signaling genes). A previously built guilt-by-association method is MORPH, which was proven to be an efficient algorithm that performs particularly well in identifying and prioritizing missing genes in plant metabolic pathways. Here, we present MorphDB, a resource where MORPH-based candidate genes for large-scale functional annotations (Gene Ontology, MapMan bins) are integrated across multiple plant species. Besides a gene centric query utility, we present a comparative network approach that enables researchers to efficiently browse MORPH predictions across functional gene sets and species, facilitating efficient gene discovery and candidate gene prioritization. MorphDB is available at http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/index/. We also provide a toolkit, named "MORPH bulk" (https://github.com/arzwa/morph-bulk), for running MORPH in bulk mode on novel data sets, enabling researchers to apply MORPH to their own species of interest.